100 ans se sont écoulés depuis la naissance du physicien
Richard Feynman, (1918-1988). Pour son anniversaire, le 11 mai, il a été honoré
avec un portrait composé d’un nombre premier,
(c'est-à-dire un nombre parmi la séquence 2, 3, 5, 7, 11,
13, 17, 19, 23… qui ne s’arrête jamais). Son image a été créée et
partagée par les éditeurs anonymes associés avec la bibliothèque de Fermat, une
plate-forme pour lire et commenter des articles académiques.
Richard Feynman étudiait la physique nucléaire et la
superfluidité de fluides. Il a reçu le prix Nobel en 1965 pour ses progrès dans
la description de l'interaction des particules à travers ce qu'on appelle l'électrodynamique
quantique. Il est dit que ses conférences en physique effrayaient les étudiants
mais attiraient des professeurs.
Malgré tout il est probablement le plus connu pour ses blagues
et ses bizarreries. Dans le livre Surely
you're joking, mr Feynman où il raconte comment il a appris à crocheter
des verrous, exploré ses rêves et faire croire aux gens qu'il pouvait parler
beaucoup de langages.
Voici comment le portrait a été fait à partir d’un
seul nombre premier.
Le processus commence avec une image en noir et blanc
avec peu de résolution. Puis les pixels sont représenté par deux chiffres, 1
pour les pixels plutôt blanc et 8 pour les autres. La probabilité que le nombre
formé dans cette façon soit un nombre premier est évidemment minime. Il faut
faire des ajustements.
Le nombre est testé par des méthodes qui permettent de rapidement exclure qu’il soit un nombre premier. Si le nombre est déqualifié il faut changer certains pixels d’une manière aléatoire et ce nombre est à nouveau testé. Si ce nombre n'est pas exclus par le simple premier test, il est soigneusement vérifie par un code plus complexe capable à identifier un nombre premier à 100%. Ensuite, il faut continuer ce processus jusqu'à un nombre premier qui rend le portrait reconnaissable apparaisse.
Aucun commentaire:
Enregistrer un commentaire
Remarque : Seul un membre de ce blog est autorisé à enregistrer un commentaire.